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Abstract: A fundamental goal of education is to inspire and instill deep, meaningful, and long-lasting
conceptual change within the knowledge landscapes of students. This commentary posits that the
tools of network science could be useful in helping educators achieve this goal in two ways. First,
methods from cognitive psychology and network science could be helpful in quantifying and analyzing
the structure of students’ knowledge of a given discipline as a knowledge network of interconnected
concepts. Second, network science methods could be relevant for investigating the developmental
trajectories of knowledge structures by quantifying structural change in knowledge networks,
and potentially inform instructional design in order to optimize the acquisition of meaningful
knowledge as the student progresses from being a novice to an expert in the subject. This commentary
provides a brief introduction to common network science measures and suggests how they might
be relevant for shedding light on the cognitive processes that underlie learning and retrieval,
and discusses ways in which generative network growth models could inform pedagogical strategies
to enable meaningful long-term conceptual change and knowledge development among students.

Keywords: education; network science; knowledge; learning; expertise; development; conceptual
representations

1. Introduction

Cognitive scientists have had a long-standing interest in quantifying cognitive structures and
representations [1,2]. The empirical evidence from cognitive psychology and psycholinguistics
demonstrates that the structure of cognitive systems influences the psychological processes that
operate within them. Classic studies in cognitive psychology demonstrated that experts are able
to uncover the deep structure of physics problems whereas novices tend to overemphasize surface
features of the same problems [3], and that expert chess players have better memory for meaningful
chess formations than novices [4]. Together, such studies show that the cognitive representations
that experts and novices construct are different, and experts’ hierarchical organization of cognitive
structures enable them to make new inferences or solve problems in their domain of expertise more
effectively [5]. More recent literature in psycholinguistics shows that structural properties of words in
the mental lexicon and semantic memory affects many cognitive and language related processes, such as
word recognition [6,7] and production [8,9], cognitive search [10], word learning [11], and children’s
vocabulary development [12,13]. Taken together, this indicates that a complete understanding of
cognitive processes is not possible without considering the structure of the cognitive representations
that these processes necessarily interact with [14].

The notion that the structure of the cognitive system affects the psychological processes that operate
in that system is especially important within the context of education and learning. All educators
aspire to teach students important, meaningful, and useful information about the world. This implies
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teaching with the goal of students acquiring meaningful knowledge and becoming experts in a given
domain, rather than with the goal of students assembling a random assortment of facts and information
lacking in cohesiveness. However, it is striking that within the field of cognitive science of learning,
the literature seems to mostly emphasize the processes and mechanisms underlying learning, with less
consideration of the cognitive or knowledge structures that students possess.

A recent tutorial paper by [15] provided a comprehensive overview of cognitive learning strategies
that have been well supported by the empirical research. Such strategies included spaced practice,
interleaving, retrieval-based practice, elaboration, concrete examples, and dual coding; although little
was mentioned about how these strategies contributed to the development of students’ knowledge
representations. This is curious considering that other research in the cognitive sciences has previously
demonstrated that expertise is associated with the development of complex, hierarchical cognitive
structures that enhance performance on highly skilled tasks [5]. This commentary provides a broad
review of the research conducted in the fields of cognitive psychology and psycholinguistics that
demonstrate the relevance and usefulness of network analysis as a way to quantify and measure
cognitive structure. In the later part of the commentary, the author’s own views on some of the
ways in which the network science approach could be applied to examine the knowledge structure of
students are presented. There are two main aims of this commentary: the first is to demonstrate how
network science methods could be harnessed to quantify these conceptual representations and track
the development of expertise, and the second is to urge and inspire cognitive psychologists, educators
and learning scientists to deeply consider the internal structure of the conceptual representations that
learners are acquiring.

As an example, consider a prominent empirical finding in the cognitive science of learning
literature—retrieval-based practice, which is the finding that being tested on the material that you
are trying to learn helps you learn the material better than simply restudying the material [16,17].
The typical experimental protocol in these studies is to provide students with a text passage to
study, with one group of students having more opportunities to restudy the material and another
group of students being repeatedly tested on their knowledge of the material. It is the latter group
(i.e., retrieval group) that out-performs the former (i.e., restudy group) on the test administered at the
end of the experimental session. However, it is important to point out that such an experimental
design is limited in its ability to examine how learners represent, acquire, and ultimately retrieve a
hierarchical, complex organization of concepts because the implicit assumption in these studies is that
the number of “informational units” that students retrieve on the test serves as a reasonable proxy for
what students have learned. Hence, it is difficult to know if retrieval-based learning can be readily
translated to the learning of knowledge that has a more complex, hierarchal structure, particularly in a
realistic setting where the informational space that learners are embedded in is complex, ambiguous,
and noisy. Such studies are unfortunately unable to directly inform educators about the cognitive
processes involved in the construction of deep, meaningful knowledge structures.

It is suggested that the main reason for why investigations of students’ knowledge representations
are not prominently featured in the cognitive science of learning literature is that it is notoriously difficult
to quantify “knowledge”. There are many valid ways of defining and representing knowledge, which is
a keenly debated topic in philosophy of science and epistemology [18,19]. The approach suggested in
this paper makes the necessarily simplifying assumption that knowledge can be reasonably represented
as a network structure of nodes and edges, where nodes represent isolated units of information
(i.e., concepts) related to a general topic area and edges or connections represent some sort of
relationship that could exist between these concepts (e.g., associative, sequential, co-occurrence, if-then,
etc.). While it is important to acknowledge that this is certainly not the only way to define and quantify
knowledge, representing knowledge as a network of interconnected concepts brings with it quite a few
methodological advantages.

First, it permits the application of tools and techniques from network science that can be brought
to bear on questions related to (i) quantifying the internal structural properties of the knowledge
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that students are acquiring and (ii) tracking the development of expertise and knowledge acquisition.
Second, conceptualizing knowledge as a network of interconnected concepts is analogous to the
way in which cognitive scientists have historically modeled the structure of semantic memory—as a
network of concepts that are connected based on associative relationships or shared features [20,21].
Hence, the application of behavioral paradigms commonly used to estimate the structure of semantic
memory in cognitive psychology and psycholinguistics could potentially be adapted to estimate the
knowledge landscapes of students. Finally, it is worth noting that representing knowledge as a network
of interconnected concepts aligns a bit more closely with our intuition of what meaningful knowledge
looks like—that knowledge is more than simply learning new information, but is also about making
new connections and building associations between ideas.

Before proceeding, it is worthwhile to point out that there are some areas in the education sciences
that are already using network analysis in interesting ways. One example is the application of network
analysis to study the social networks of students collaborating and interacting asynchronously on
an online learning platform [22]. As another example, researchers analyzed the epistemic frames
of students using network analysis to track how students’ “ways of knowing” evolved over the
course of an online game [23]. As a final example, Wise and Cui [24] analyzed the reflection essays
of dental students as word co-occurrence networks. However, it is important to point out that these
papers do not focus on analyzing the students’ knowledge structures of a given domain; i.e., these
investigations focused on epistemic frames or ways of knowing [23], looked at the social interactions
among learners [22], or ref [24] analyzed reflection essays rather than objective measurements of
domain-specific knowledge and skill [24]. This commentary specifically focusses on the internal
knowledge structure of students, i.e., what they know (rather than how they know, as in [23]), because
a key aim of education is to nurture novice students to become, or at least approximate, experts in a
given subject or domain area. Although it is by no means easy to measure expertise in fine-grained
ways [25], it is suggested that network analysis could be a useful methodological framework for
education research as it could offer education researchers new, and more fine-grained, insights into the
developmental trajectories of conceptual structures and perhaps some ideas as to how to optimize its
developmental trajectory.

In the rest of this commentary, two areas in which the application of network analysis could
be especially relevant to the research conducted in the learning and education sciences are further
discussed. The first section provides a gentle introduction of the ways in which knowledge or
conceptual structure can be measured and represented as a network of interconnected concepts, and
how network analysis can be used to quantify the structural characteristics at various levels of the
knowledge network. The second section is more speculative in nature, focusing on how long-term
conceptual change and knowledge development might be quantified via a network science framework.
The section concludes with brief discussion of two specific examples in which the tools of network
analysis could be beneficial for educators in informing the design and planning of course syllabi and
lessons in order to maximize the development of subject expertise among students.

2. Representing Knowledge Structures as Networks

Knowledge is more than simply a collection of disparate facts about a given topic; it includes
the complex nature of the interrelationships among a body of factual information. This section
demonstrates how techniques from network science lend themselves well to capturing the relational
nature of knowledge. The conceptual structure of a learner’s knowledge can be explicitly quantified
and represented as a network of interconnected concepts, where nodes represent distinct conceptual
units, and edges or connections are placed between concepts that share a meaningful relation.

Although networks are conceptually straightforward, it is not always clear how these networks
might be constructed. This section first describes methods commonly used by cognitive scientists to
measure and quantify semantic networks and shows how these methods could be extended to measure
students’ knowledge structures. This is followed by a brief overview of network measures that permit
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an analysis of the structure of knowledge networks at multiple scales as well as a brief discussion of
how these network measures might be relevant for educational research and practice.

2.1. Measuring Knowledge Structures

The most straightforward way of measuring students’ knowledge is to simply ask them to
construct a concept map, that is, a diagrammatic representation consisting of concepts connected to
other concepts [26]. Although concept maps are frequently used in education research and as a teaching
and learning tool [27], they are frequently analyzed qualitatively—for instance, relying on visual
inspection to determine if the concept map has a “chain”, “spoke-like”, or “net-like” structure [27].
Expertise is said to be reflected in the visual complexity of the concept maps generated; hence, students
with greater expertise tend to generate “net-like” concept maps, whereas students with lower levels
of expertise tend to generate “chain” or “spoke-like” concept maps [27,28]. However, more detailed
information about the underlying structure of students’ concept maps can be derived using the tools of
network science as the concept maps produced by students can be readily converted into a network of
concepts and then analyzed quantitatively. Such an approach has been used to quantify the knowledge
structures of pre-service teachers [29] and undergraduate students [30], revealing differences in the
structural properties of the knowledge representation of experts and novices.

Within the field of cognitive psychology, there has been much research devoted to the measurement
and quantification of the structure of semantic memory, the part of the long-term memory that is
dedicated to the storage of general facts about the world. Semantic memory is commonly represented
as a semantic network of interrelated concepts or words [20,31].

One way of quantifying the structure of semantic memory is by using a free association task,
where participants provide associative responses to a given cue word [32–34]. For instance, when
given a cue word “dog”, a participant might respond with associative responses such as “cat”, “bone”,
and “bark”. It is particularly useful to note the existence of large, freely available behavioral databases
consisting of thousands of association norms for various languages (e.g., the Small World of Words
project; website: https://smallworldofwords.org/en). Free association norms are commonly used to
study the internal structure of semantic memory [31] as well as the semantic processes that operate
within semantic memory [35]. In these semantic networks, connections are placed between cues and
the associative responses to the cue (e.g., dog—cat, dog—bone, dog—bark). Within the context of the
education sciences, it is possible to curate a list of cues that target relevant concepts in a subject (e.g., for
a biology class, potential cues could be “cell”, “evolution”, “DNA”) and present these cues in a free
association task [36]. While free association data are typically aggregated and represented as a single
network, in principle it is possible to construct separate association networks for different populations
(e.g., for better or less well performing students) or across longitudinal designs (e.g., students who
complete the free association task at the beginning or at the end of the course).

Another way of measuring semantic similarity among concepts is through the use of a feature
listing or feature production task [37]. In this paradigm, when given a cue word, participants generate
as many features that are associated with that word as they can. For instance, the cue “dog” might
elicit features such as “has legs”, “barks”, “is furry”. Again, large databases of feature production
norms are readily available for researchers to analyze the internal conceptual structure of words [38].
Feature networks can be constructed by connecting concepts that share the same features, and network
analysis of feature networks have provided new insights into language development [39,40] and
semantic processing [41]. Within the context of the education sciences, students could be asked to list
features or properties of key concepts. Staying within the biology example, students could be asked
to list features associated with the concepts of “cell” or “evolution”, and these concept-feature pairs
could be used to construct feature-based networks.

The category fluency task (or semantic fluency task) is also commonly used to study the structure
of semantic memory. In this task, participants list as many items from a category (such as animals) as
possible within a pre-specified time limit (usually one to three minutes). One striking characteristic
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of fluency data generated in this task is that individuals tend to list semantically related items
sequentially [42]. For instance, a participant asked to list animals might list a sequence of pets (“dog”,
“cat”, “hamster”) before switching to another cluster of animals (zoo animals like “lion”, “giraffe”,
“zebra”). Hence, it is possible to estimate a semantic network of a given category from a corpus of
fluency data, at both the population or group-level and at the level of individuals [43]. The behavioral
data obtained from this task has been used to study how people forage or search their semantic
memory for information [10] and examine the mechanisms underlying semantic memory impairment
among patients with Alzheimer’s disease [44]. Within the context of the education sciences, this task
could be adapted to measure students’ knowledge structures—instead of listing category members
from a general category such as animals, students could be asked to list as many concepts or ideas
as possible related to a given subtopic in a general field (e.g., electromagnetism in physics) or within
a general topic (e.g., physics). Similar to the free association task, it is possible to construct separate
fluency networks for different populations (e.g., for better or less well performing students) or across
longitudinal designs (e.g., students who complete the free association task at the beginning or at the
end of the course).

Finally, computational methods from natural language processing could be adopted to measure
the knowledge structure of textbooks and other reading materials that students are exposed to.
The development of computational tools to extract meaning from billions of words has informed
research on word recognition [45,46], semantic memory structure [10], and diachronic changes in word
meanings [47]. These tools rely on distributional semantics, where words are embedded in vector spaces
that reflect their co-occurrence relationships [48,49]—words with similar patterns of co-occurrence
relationships with other words are said to be most semantically similar [50]. Co-occurrence relationships
among words in a corpus can be represented as a language network where edges are placed between
words that co-occur with each other in a corpus [51,52]. Note that this approach differs from the
methods discussed previously that derive network representations from behavioral data provided by
students. In this case, the focus is on quantifying the information spaces, or the learning environment,
that students are exposed to, which over time shape the internal knowledge representations of students
to some extent. Research in language development indicates that children’s cognitive and vocabulary
development are influenced by the quantity and quality of language input provided by the parent
or caregiver [53,54], and children tend to learn words that are central or stand out in the semantic
landscape of words that they are exposed to [39,55]. These results suggest that it is important to
consider the role that the structure of the “input” provided to the students plays in their learning and
the development of their knowledge networks.

2.2. Measuring the Network at Multiple Scales

Once the learner’s knowledge is represented as a network, we can analyze that network in various
ways to gain insights into the structural properties of that knowledge representation. This section
describes the network measures commonly used to analyze networks at three different scales (see
Figure 1)—at the level of individual nodes (micro-level), at the level of the entire network (macro-level),
and at the level of intermediary sub-groupings of the network (meso-level)—and briefly considers
how these measures might be interpreted within the context of a knowledge network. Table 1 provides
a summary of common network measures and their potential application to the educational sciences.
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Figure 1. Visual depictions of various levels of analysis of a network.

Table 1. Commonly used network measures and their potential application to the educational sciences.
Measures in italics were discussed in the paper.

Network Measure Level of Analysis Potential Educational Application

Degree
Local clustering coefficient
Closeness centrality
Betweenness centrality

Micro-level

• Identification of central or bridging concepts
• Measure of efficiency of retrieval
• Measure of effectiveness of integration into memory

Community structure
(modularity) Meso-level

• Communities reflect themes or major topics in
a discipline

Average degree
Global clustering coefficient
Average shortest path length
Small world index
Network diameter

Macro-level

• Compare network characteristics of expert and
novice networks

• Compare network characteristics before and after
educational intervention

2.2.1. Micro-Scale of the Network

At the level of individual nodes, centrality measures are frequently computed to provide some
indication of “importance” of a given node in the network. There are many different centrality measures
that have been developed in the network science literature [56] and while it is beyond the scope of this
review to discuss all of them, this section will focus on the following measures of degree, closeness
centrality, and betweenness centrality to provide a flavor of how these network measures could be
relevant for the education and learning sciences.

Degree refers to the number of immediate connections that a node has. Within the context of
knowledge networks, a high degree node has many neighboring, closely related concepts, whereas a
low degree node has few neighboring, closely related concepts. The degree of a concept in a knowledge
network could have implications for (i) the efficiency of retrieval of the concept and (ii) the effectiveness
of integrating a new concept into memory. In a situation where a student is required to retrieve a
specific concept (e.g., on a test), the activation of a high degree concept might lead to the activation of
other closely related concepts and elicit greater competition among activated concepts, analogous to
psycholinguistic work showing that words with many similar-sounding neighbors experience more
competitive effects and tend to be recognized less quickly [57]. Whereas in the context of learning a new
concept, having many neighboring concepts might facilitate the learning of that concept, analogous to
research in word-learning that indicate that newly acquired words with many neighbors tend to be
better integrated into long-term memory structure as these words have more connections to existing
lexical representations [58].
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Closeness centrality measures the extent to which a node is “close” to other nodes in the network.
A node with high closeness centrality is close to many nodes in the network as there is a short path
between the target node and all other nodes, whereas a node with low closeness centrality is far
from many nodes in the network as there is a long path between the target node and all other nodes.
Psycholinguistic studies have shown that the closeness centrality of words in a lexical network affects
the speed of retrieval of words in a word recognition task, such that words with greater closeness
centralities tend to be recognized more quickly than words with lower closeness centralities [59,60].
Similarly, we may expect that concepts with high and low closeness centralities to also have some
influence on learning and retrieval processes. For instance, concepts with high closeness centralities
may represent especially important concepts that occupy central locations in the knowledge space and
that need to be grasped in order to facilitate connections to other concepts.

Betweenness centrality measures the extent to which a node lies on the shortest path between any
two nodes in the network. A node with high betweenness centrality frequently lies in “between” the
shortest path between all possible pairs of nodes in the network, whereas a node with low betweenness
centrality does not tend to lie on the shortest path between all possible pairs of nodes in the network.
Betweenness centrality is a potentially important network measure for education and learning scientists
to consider because concepts with high betweenness centralities might represent landmark concepts
that are crucial linking concepts that bridge distant concepts in a knowledge space, and it could be
informative for how students navigate the knowledge network.

2.2.2. Macro-Scale of the Network

Macro-level network measures provide an indication of the overall structure and connectivity
of the network as a whole, and reflects the global organization of the knowledge network. Some of
these macro-level networks measures are simply averages of the corresponding micro-level metric.
For instance, the average degree of the network is computed by averaging the degrees of individual nodes.

Other examples of macro-level network measures include average shortest path length and global
clustering coefficient. Average shortest path length (ASPL) refers to the average of the length of the
shortest path between all possible pairs of nodes in the network. Global clustering coefficient refers
to the number of closed triangles relative to the total number of triangles that is possible for a given
number of nodes in the network [61]. A ubiquitous characteristic of many real-world networks is
that they tend to have low ASPLs and high amounts of local clustering relative to a random network
with the same number of nodes and edges [61]. Networks with such properties are said to have a
“small-world” structure, and have important implications for understanding cognitive search and
human memory because the emergence of a small-world structure may be associated with the trade-off

of reducing distance between nodes and the cost of creating long-range links between nodes that are
far away (as in brain networks; [62]).

Within the context of knowledge networks, measuring the small worldness of these networks
could provide an indication of efficiency and navigability within the internal knowledge structures of
students [63]. Macro-level measures such as ASPL and global C could be used to compare the network
structure of knowledge networks obtained from different populations (e.g., between experts and
novices) or before or after an educational intervention. For instance, one might expect experts to have
a knowledge network with a greater small world index (i.e., more “small-worldness”; [64]) as compared
to novices who may have a knowledge network that resembles more of a random network. The more
random network structure of novices may reflect pre-existing misconceptions or misunderstandings of
a topic that are manifested as inaccurate edges and/or missing edges between concepts. To provide
another example, evidence of a successful educational intervention might be reflected in global changes
in the knowledge network that improves its overall efficiency and navigability.
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2.2.3. Meso-Scale of the Network

Many real-world networks also possess community structure, which refers to a meso-level property
of networks in which there are subgroupings of nodes whereby nodes are better connected to nodes
within the same subgroup as compared to nodes outside of the subgroup [65]. There are many
community detection algorithms in the literature, each providing a slightly different way of partitioning
the network into communities [66]. Within the context of education sciences, communities of nodes
in knowledge networks may reflect natural sub-topics within a broader field, potentially revealing
non-intuitive sub-topics that are difficult to detect or reflecting themes and topics in a domain that could
be useful for guiding the design and planning of courses and modules. For instance, [67] conducted
a community detection analysis on knowledge landscapes of the history of science and found that
thematic groupings emerged around person-centered landmarks. Community detection methods
could also be used to identify bridge concepts that link two or more communities (i.e., concepts that lie
on the “edge” of communities), which might represent especially important concepts that require extra
attention so that students may build connections across “disparate” sets of information and build a
more cohesive knowledge network.

2.3. Summary

This section provided a gentle introduction to how methods from cognitive psychology could
be used to infer knowledge and conceptual networks, and how these networks could be analyzed at
different levels, or scales, of the network structure. An introduction to some network science measures
and their potential applications to education research is also provided. The main takeaway from this
section is that representing what students know as a “knowledge network” affords the application
of network analysis to quantify various aspects of its structure, which have the potential to inform
research in the educational and learning sciences. Indeed, it is striking that researchers interested in
understanding learning, encoding, and retrieval processes among students are not capitalizing on
the tools of network analysis to investigate the underlying knowledge networks that students are
necessarily constructing over the course of their learning [15,16]. In addition, representing concepts
and their interrelationships as a complex network aligns more closely to our intuition that knowledge
is inherently relational in nature, and that expertise is reflected in an interconnected, well-integrated
organization of concepts in a given domain.

3. Quantifying the Development of Expertise through Network Analysis

One important goal of education is to build domain expertise among students so that they not
know only a lot about a given domain, but are able to connect ideas and concepts in meaningful ways.
This section focusses on how long-term conceptual change and knowledge development might be
quantified via the network science framework. The first part of this section reviews the burgeoning
literature in language development research that uses generative network growth models to investigate
the growth of language networks among children, and suggests how these generative network growth
models could be applied to examine the development of knowledge networks. The second part is
admittedly quite speculative, but briefly considers two specific examples in which the tools of network
analysis could be beneficial for educators in the design and planning of course syllabi and lessons in
order to maximize the development of subject expertise among students.

3.1. Using Generative Network Growth Models to Track Conceptual Development

Not only do children experience a growth spurt in vocabulary size over the course of early language
acquisition, the underlying structure of their language networks also undergoes rapid changes. There is
a growing number of papers that have used the tools of network science to investigate the development
of language networks in early life [12,13,40,55,68,69]. Particularly relevant to this work are generative
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network growth models developed by network scientists to examine the mechanisms to explain the
various structural features of networks.

One prominent example of a generative network growth model is preferential attachment, where
new nodes are more likely to attach to existing nodes in network that already have many connections [70].
Networks grown via the mechanism of preferential attachment have a power law degree distribution,
where there are few “hub” nodes with many connections and many nodes with fewer connections [70].
When adapted for the context of language acquisition, generative network growth models could be
considered as learning biases or algorithms that can ultimately shape the overall structure of the
learner’s mental lexicon. As compared to a random acquisition model where new words are randomly
added to the language network, language networks that prioritize the acquisition of words that have
many semantic connections (i.e., high degree) in the learning environment are more probable given
the empirical data [39,55]. This network growth model is known as preferential acquisition in the
literature [39]. In other words, children appear to learn new words that occupy “central” locations and
would otherwise “stand out” in the language environment that they are exposed to. In contrast, the
preferential attachment model did not provide good fits to the empirical data. Overall, the literature
suggests that language acquisition processes in young children appear to be more sensitive to the
structure of the language environment that they are exposed to (i.e., preferential acquisition) rather
than to the internal structure of the children’s existing vocabulary (i.e., preferential attachment).

These generative network growth models could similarly be translated to learning within the
educational context. Figure 2 provides an overview of three network growth models commonly
investigated in language development and suggests how they might be relevant in an educational
context. Recall that the preferential attachment model states that the learner would be more likely to
learn new nodes that, when added to the network, tend to be connected to existing nodes with many
connections. In the context of a knowledge network of concepts, this model corresponds to learning
that is driven by the internal connectivity of a learner’s existing knowledge network. Here, prior
knowledge plays a strong role in guiding the concepts that are most likely to be acquired, such that
richly connected concepts tend to become more richly connected over time. This jives with education
research showing that prior knowledge of learners strongly affects how they search, process, and
interpret new pieces of information [71–73]. The preferential acquisition model states that the learner
would be more likely to learn new nodes that have many connections in the learning environment.
Hence, it is the structure in the external, learning environment that learners are exposed to that drives
growth in the knowledge network, whereby salient, “landmark” concepts are most likely to be learned.
Finally, the lure of the associates model states that the learner would be more likely to learn new nodes
that would form many connections with existing nodes in the network [58]. Within the context of a
developing knowledge network, this is analogous to learning that is driven by making connections
between a learner’s existing knowledge and the material to be learned. New concepts that have many
“hooks” and connect readily to many aspects of what the learner already knows are more readily
integrated into the knowledge network.
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Figure 2. Modeling the growth of knowledge networks with generative network growth models. Smaller,
grey nodes represent concepts already known by the learner (i.e., prior knowledge). Larger white
and red nodes represent the concepts to be learned (i.e., the external, learning environment).
Connections between concepts indicate the existence of a meaningful relationship between the concepts.
Connections in bold are relevant for computing the network growth model prediction. Red nodes
represent the concept that is most likely to be acquired based on the network growth model prediction.

When applied to the context of education and learning, these network growth models could
potentially provide new ways of quantitatively tracking the learning trajectories of students. It could
also be important for helping educators decide what sort of learning or teaching strategy would be
most appropriate given the interactions between the student’s current knowledge and the nature
of the content to be acquired. For instance, when the learner is very new to a topic, preferential
acquisition might be a more useful approach as the focus is on capitalizing on structure in the new
content to facilitate learning. In the classroom, the educator could emphasize central, landmark ideas
in the discipline and make them more salient to students. On the other hand, when the learner has
accumulated more knowledge about the topic, we might expect that the structure of the existing
knowledge network would begin to drive learning in different ways (i.e., preferential attachment).
An educator might also exploit the lure of the associates mechanism by making explicit as many
connections as possible between a student’s existing knowledge and the new material, scaffolding the
development of the learner’s knowledge network.

3.2. Network Science in Educational Design

Educators are essentially designers. Wiggins et al. argue that much of what teachers do is to
craft course syllabi, curriculum, lesson plans, learning activities, and assessments in order achieve
certain educational goals [74]. If one of these educational goals involves the development of students’
knowledge in a given domain, network science approaches could be useful for helping educators
achieve this goal. The subsequent sections briefly consider two ways in which network science
approaches could be relevant in guiding educational design through optimizing the development of
knowledge networks.
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3.2.1. Backward Design and Network Growth Optimization

Backward design is the idea that educators should “begin with the end in mind”. Engaging in
deliberate and focused instructional design requires teachers to first think about what are the sorts of
learning and understandings that students should achieve at the end [74]. The first stage of backward
curriculum design involves deeply considering what students should know and understand by the
end of the course, before designing appropriate assessments to assess student learning and before
planning learning experiences and instruction that would enable students to achieve the learning goals
identified in the first stage.

From a network science perspective, the end-goal of education could be concretely envisioned as
students attaining an end-state knowledge network that is large in size (i.e., students should know a
lot about a given domain), but also has a small world structure (i.e., students are making meaningful,
non-random connections between ideas), rather than simply acquiring a random assortment of facts.
As discussed above, small world structure in real-world networks has important implications for
understanding the efficient transmission of information flow in the network. For instance, various
language networks that represent the structure of the mental lexicon have small world structure that
allows for activation to spread rapidly throughout the network, permitting rapid navigation within
the network [75] and efficient lexical processes related to word retrieval and lexical selection [76,77].
Acquiring a knowledge network that has small world structure should allow students to navigate their
knowledge networks efficiently and could form an important foundation for students to extend upon
their current knowledge or generate new knowledge. In addition, a small world knowledge network
should be more robust to the random forgetting of facts over time.

To this end, network science approaches could be relevant in two ways. First, in addition to
traditional assessment methods, the behavioral paradigms used in the cognitive science to estimate the
structure of semantic networks (as reviewed in Section 2.1) could be adopted to quantify the structure
of students’ knowledge networks of a given topic. This could serve as an additional indicator that
informs the educator (and students) about whether educational goals are being met. For instance, the
knowledge network of a class of students could be estimated using the free association task at the
beginning and at the end of the course, providing a visually compelling indicator of the complexity of
the knowledge that the students have gained over the course of the semester, or conversely revealing
sparse, underspecified areas of the knowledge network. Second, if obtaining a “small world knowledge
network” were an explicit educational goal, educators could “reverse-engineer” the processes that
need to occur in order for that goal to be achieved. At the very least, this informs educators’ design
decisions with respect to the type of learning and teaching activities that would be most effective for
students to build strong associations among closely related concepts (i.e., achieving high levels of
local clustering) as well as draw non-intuitive or long-distance connections between less immediately
obvious sets of concepts (i.e., reducing the overall distance between concepts in the network).

3.2.2. Enduring Understandings and Gap Filling in Networks

An integral part of effective instructional design is to identify “big ideas”, or enduring
understandings at the heart of a discipline, that are important for students to know [74]. An enduring
understanding is an important idea that is central to the discipline and that is essential in order to
attain an in-depth understanding of the area. Unfortunately, Wiggins et al. [74] do not say much about
what these enduring understandings or big ideas should be and it is ultimately left to the domain
expert to figure out. However, this is easier said than done as important ideas that may be intuitive
to domain experts are not necessarily obvious to the layperson. Network science methods could
be valuable in providing a quantitative analysis of expert knowledge structures in order to identify
central or bridging concepts by computing various network measures of centrality. This approach has
been used by Koponen and colleagues to analyze the knowledge structures of experts and to identify
concepts that represent global landmarks in the knowledge landscape [29,67,78,79].
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Finally, the evidence suggests that students tend to mis-regulate their learning [80,81]. In other
words, students are not accurate judges of how well they have learned a topic, particularly if the
topic was challenging [81]. It may be possible to improve metacognitive or self-regulatory skills of
students by being strategic about the introduction of core principles and specific ideas in the discipline
that purposely creates “gaps” in the knowledge space. Computational simulations conducted by [55]
showed that young children acquire new words in a fashion that purposely creates gaps, or sparsely
connected areas, in their language networks, which persist for some time before being filled in.
The authors suggested that this process of gap formation and gap filling may be especially important
for building language networks with a robust global structure despite the variability of the language
input that children are exposed to [82,83]. Perhaps a similar process could be induced among students
trying to acquire a complex network of discipline knowledge. The presence of “unknowns” in the
knowledge landscape might naturally motivate learning based on information seeking strategies that
attempt to reduce uncertainty [84], for example, via an information seeking strategy of searching
for specific pieces of information to fill in knowledge gaps. By being explicit and upfront about the
enduring understandings that students should take away from the course, educators could mimic a
universal property of learning in complex environments by intentionally “setting up” an underspecified
knowledge network that contains knowledge gaps. Educators could then design constructive learning
activities and assessments that enable students to proceed from learning about coarse-grained concepts
to fine-grained concepts, leading to the development of a robust and in-depth knowledge landscape.

3.3. Summary

This section provided an overview of generative network growth models, as well as a brief review
of how these models have been used within the context of language development and how they could
potentially be adapted to investigate long-term conceptual change in knowledge networks. The main
takeaway from this section is that long-term conceptual change and knowledge development could
be meaningfully quantified via the network science perspective. Generative network growth models
could be used to examine the development of knowledge networks, and it is further suggested that
the network science perspective could offer a useful conceptual framework for assisting educators in
the design and planning of course syllabi and lessons in order to enhance the development of subject
expertise among students.

4. Conclusions

Ultimately, the goal of education is to inspire and instill deep, meaningful, and long-lasting
conceptual change in the knowledge landscapes of students. This commentary puts forward the
idea that the network science approach could be useful in helping educators to achieve this goal.
Although it is not easy to quantify or measure expertise [25], network science approaches could be
useful for measuring the knowledge networks of students, and provide new ways of quantifying
and tracking the development of domain expertise. By representing student knowledge as a network
of interconnected concepts, the tools of network science and behavioral paradigms from cognitive
psychology could be combined to measure and quantify the structure of such knowledge networks at
various levels of analysis, as discussed in Section 2. In addition, the tools of network science could be
relevant for investigating the developmental trajectories of knowledge structures, and further inform
instructional design to maximize the acquisition of meaningful knowledge, as discussed in Section 3.

A deep consideration of the knowledge representation that students are acquiring provides
an important complement to the current dogma in the field of cognitive science of learning, which
predominantly focusses on the “process” of learning [15], as well as other areas of the learning
sciences, which has focused on a variety of aspects ranging from the social network structure of
learners [22] to how students develop their epistemic frames [23]. Although network science methods
permit the quantification of knowledge representations and their developmental trajectories, long-term
conceptual change will likely emerge from real-time feedback loops where the processes of retrieval
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and learning interact with, and are grounded within, the structure of knowledge landscapes that
students are building.
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